The Combination of Low-Frequency Ultrasound and Antibiotics Improves the Killing of In Vitro Staphylococcus aureus and Pseudomonas aeruginosa Biofilms

Research output: Contribution to journalJournal articleResearchpeer-review


  • Fulltext

    Final published version, 3.06 MB, PDF document

Due to an increase in underlying predisposing factors, chronic wounds have become an increasing burden on healthcare systems worldwide. Chronic infections often contain biofilm-forming bacteria, which are challenging to eradicate due to increased antibiotic tolerance; thus, new and improved therapeutic strategies are warranted. One such strategy is the combination of ultrasound and antibiotics. Therefore, this study aimed to investigate the combinatory effects of low-frequency (50 kHz) ultrasound delivered by specially designed ultrasound patches using flexible piezoelectric material, PiezoPaint™, in combination with antibiotics against biofilms with Staphylococcus aureus and Pseudomonas aeruginosa. The reduction in viable cells in S. aureus and P. aeruginosa biofilms was evaluated post-treatment with fusidic acid, clindamycin, ciprofloxacin, and colistin in combination with ultrasound treatment. Two-hour ultrasound treatment significantly increased the bactericidal effect of all four antibiotics, resulting in a 96–98% and 90–93% reduction in P. aeruginosa and S. aureus, respectively. In addition, an additive effect was observed when extending treatment to 4 h, resulting in >99% and 95–97% reduction in P. aeruginosa and S. aureus, respectively. These results contrasted the lack of effect observed when treating filter-biofilms with antibiotics alone. The combined effect of ultrasound and antibiotic treatment resulted in a synergistic effect, reducing the viability of the clinically relevant pathogens S. aureus and P. aeruginosa. The modularity of the specially designed patches intended for topical treatment holds promising applications as a supplement in chronic wound therapy. Further studies are warranted with clinically isolated strains and other clinically relevant antibiotics before proceeding to studies where safety and applicability are investigated.

Original languageEnglish
Article number1494
Issue number11
Publication statusPublished - 2022

Bibliographical note

Publisher Copyright:
© 2022 by the authors.

    Research areas

  • antibiotics, biofilm, flexible piezoelectric material, low-frequency ultrasound, Pseudomonas aeruginosa, Staphyloccocus aureus

ID: 327472990