The exopolysaccharide gene cluster Bcam1330-Bcam1341 is involved in Burkholderia cenocepacia biofilm formation, and its expression is regulated by c-di-GMP and Bcam1349

Research output: Contribution to journalJournal articleResearchpeer-review

Standard

The exopolysaccharide gene cluster Bcam1330-Bcam1341 is involved in Burkholderia cenocepacia biofilm formation, and its expression is regulated by c-di-GMP and Bcam1349. / Fazli, Mustafa; McCarthy, Yvonne; Givskov, Michael; Ryan, Robert P; Tolker-Nielsen, Tim.

In: MicrobiologyOpen, Vol. 2, No. 1, 02.2013, p. 105-122.

Research output: Contribution to journalJournal articleResearchpeer-review

Harvard

Fazli, M, McCarthy, Y, Givskov, M, Ryan, RP & Tolker-Nielsen, T 2013, 'The exopolysaccharide gene cluster Bcam1330-Bcam1341 is involved in Burkholderia cenocepacia biofilm formation, and its expression is regulated by c-di-GMP and Bcam1349', MicrobiologyOpen, vol. 2, no. 1, pp. 105-122. https://doi.org/10.1002/mbo3.61

APA

Fazli, M., McCarthy, Y., Givskov, M., Ryan, R. P., & Tolker-Nielsen, T. (2013). The exopolysaccharide gene cluster Bcam1330-Bcam1341 is involved in Burkholderia cenocepacia biofilm formation, and its expression is regulated by c-di-GMP and Bcam1349. MicrobiologyOpen, 2(1), 105-122. https://doi.org/10.1002/mbo3.61

Vancouver

Fazli M, McCarthy Y, Givskov M, Ryan RP, Tolker-Nielsen T. The exopolysaccharide gene cluster Bcam1330-Bcam1341 is involved in Burkholderia cenocepacia biofilm formation, and its expression is regulated by c-di-GMP and Bcam1349. MicrobiologyOpen. 2013 Feb;2(1):105-122. https://doi.org/10.1002/mbo3.61

Author

Fazli, Mustafa ; McCarthy, Yvonne ; Givskov, Michael ; Ryan, Robert P ; Tolker-Nielsen, Tim. / The exopolysaccharide gene cluster Bcam1330-Bcam1341 is involved in Burkholderia cenocepacia biofilm formation, and its expression is regulated by c-di-GMP and Bcam1349. In: MicrobiologyOpen. 2013 ; Vol. 2, No. 1. pp. 105-122.

Bibtex

@article{0e1986d24cc544bd998b4cf1c743f81c,
title = "The exopolysaccharide gene cluster Bcam1330-Bcam1341 is involved in Burkholderia cenocepacia biofilm formation, and its expression is regulated by c-di-GMP and Bcam1349",
abstract = "In Burkholderia cenocepacia, the second messenger cyclic diguanosine monophosphate (c-di-GMP) has previously been shown to positively regulate biofilm formation and the expression of cellulose and type-I fimbriae genes through binding to the transcriptional regulator Bcam1349. Here, we provide evidence that cellulose and type-I fimbriae are not involved in B. cenocepacia biofilm formation in flow chambers, and we identify a novel Bcam1349/c-di-GMP-regulated exopolysaccharide gene cluster which is essential for B. cenocepacia biofilm formation. Overproduction of Bcam1349 in trans promotes wrinkly colony morphology, pellicle, and biofilm formation in B. cenocepacia. A screen for transposon mutants unable to respond to the overproduction of Bcam1349 led to the identification of a 12-gene cluster, Bcam1330-Bcam1341, the products of which appear to be involved in the production of a putative biofilm matrix exopolysaccharide and to be essential for flow-chamber biofilm formation. We demonstrate that Bcam1349 binds to the promoter region of genes in the Bcam1330-Bcam1341 cluster and that this binding is enhanced by the presence of c-di-GMP. Furthermore, we demonstrate that overproduction of both c-di-GMP and Bcam1349 leads to increased transcription of these genes, indicating that c-di-GMP and Bcam1349 functions together in regulating exopolysaccharide production from the Bcam1330-Bcam1341 gene cluster. Our results suggest that the product encoded by the Bcam1330-Bcam1341 gene cluster is a major exopolysaccharide that provides structural stability to the biofilms formed by B. cenocepacia, and that its production is regulated by c-di-GMP through binding to and promotion of the activity of the transcriptional regulator Bcam1349.",
author = "Mustafa Fazli and Yvonne McCarthy and Michael Givskov and Ryan, {Robert P} and Tim Tolker-Nielsen",
note = "{\textcopyright} 2012 The Authors. Published by Blackwell Publishing Ltd. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.",
year = "2013",
month = feb,
doi = "10.1002/mbo3.61",
language = "English",
volume = "2",
pages = "105--122",
journal = "MicrobiologyOpen",
issn = "2045-8827",
publisher = "JohnWiley & Sons Ltd",
number = "1",

}

RIS

TY - JOUR

T1 - The exopolysaccharide gene cluster Bcam1330-Bcam1341 is involved in Burkholderia cenocepacia biofilm formation, and its expression is regulated by c-di-GMP and Bcam1349

AU - Fazli, Mustafa

AU - McCarthy, Yvonne

AU - Givskov, Michael

AU - Ryan, Robert P

AU - Tolker-Nielsen, Tim

N1 - © 2012 The Authors. Published by Blackwell Publishing Ltd. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

PY - 2013/2

Y1 - 2013/2

N2 - In Burkholderia cenocepacia, the second messenger cyclic diguanosine monophosphate (c-di-GMP) has previously been shown to positively regulate biofilm formation and the expression of cellulose and type-I fimbriae genes through binding to the transcriptional regulator Bcam1349. Here, we provide evidence that cellulose and type-I fimbriae are not involved in B. cenocepacia biofilm formation in flow chambers, and we identify a novel Bcam1349/c-di-GMP-regulated exopolysaccharide gene cluster which is essential for B. cenocepacia biofilm formation. Overproduction of Bcam1349 in trans promotes wrinkly colony morphology, pellicle, and biofilm formation in B. cenocepacia. A screen for transposon mutants unable to respond to the overproduction of Bcam1349 led to the identification of a 12-gene cluster, Bcam1330-Bcam1341, the products of which appear to be involved in the production of a putative biofilm matrix exopolysaccharide and to be essential for flow-chamber biofilm formation. We demonstrate that Bcam1349 binds to the promoter region of genes in the Bcam1330-Bcam1341 cluster and that this binding is enhanced by the presence of c-di-GMP. Furthermore, we demonstrate that overproduction of both c-di-GMP and Bcam1349 leads to increased transcription of these genes, indicating that c-di-GMP and Bcam1349 functions together in regulating exopolysaccharide production from the Bcam1330-Bcam1341 gene cluster. Our results suggest that the product encoded by the Bcam1330-Bcam1341 gene cluster is a major exopolysaccharide that provides structural stability to the biofilms formed by B. cenocepacia, and that its production is regulated by c-di-GMP through binding to and promotion of the activity of the transcriptional regulator Bcam1349.

AB - In Burkholderia cenocepacia, the second messenger cyclic diguanosine monophosphate (c-di-GMP) has previously been shown to positively regulate biofilm formation and the expression of cellulose and type-I fimbriae genes through binding to the transcriptional regulator Bcam1349. Here, we provide evidence that cellulose and type-I fimbriae are not involved in B. cenocepacia biofilm formation in flow chambers, and we identify a novel Bcam1349/c-di-GMP-regulated exopolysaccharide gene cluster which is essential for B. cenocepacia biofilm formation. Overproduction of Bcam1349 in trans promotes wrinkly colony morphology, pellicle, and biofilm formation in B. cenocepacia. A screen for transposon mutants unable to respond to the overproduction of Bcam1349 led to the identification of a 12-gene cluster, Bcam1330-Bcam1341, the products of which appear to be involved in the production of a putative biofilm matrix exopolysaccharide and to be essential for flow-chamber biofilm formation. We demonstrate that Bcam1349 binds to the promoter region of genes in the Bcam1330-Bcam1341 cluster and that this binding is enhanced by the presence of c-di-GMP. Furthermore, we demonstrate that overproduction of both c-di-GMP and Bcam1349 leads to increased transcription of these genes, indicating that c-di-GMP and Bcam1349 functions together in regulating exopolysaccharide production from the Bcam1330-Bcam1341 gene cluster. Our results suggest that the product encoded by the Bcam1330-Bcam1341 gene cluster is a major exopolysaccharide that provides structural stability to the biofilms formed by B. cenocepacia, and that its production is regulated by c-di-GMP through binding to and promotion of the activity of the transcriptional regulator Bcam1349.

U2 - 10.1002/mbo3.61

DO - 10.1002/mbo3.61

M3 - Journal article

C2 - 23281338

VL - 2

SP - 105

EP - 122

JO - MicrobiologyOpen

JF - MicrobiologyOpen

SN - 2045-8827

IS - 1

ER -

ID: 45954568